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Abstract

This supplemental material file provides additional information along with the EuroVis’15 paper “Data-driven
Evaluation of Visual Quality Measures”. We provide (1) further details on the study setup in terms of how we
cleaned the base data, (2) mathematical descriptions of the separation measures we tested, (3) additional infor-
mation on the number of bootstrap samples used, and (4) a sanity check pilot study that we conducted.

1. Data Cleaning

In the following, we provide additional information to the
cleaning step that we needed to undertake in order to make
the data from Sedlmair et al. [SMT13] applicable to our
study. These details extend upon Section 4.1. of the paper.

We needed to filter and clean the data from Sedlmair et
al. [SMT13]. This process included five steps: (i) filtering
out 3D and multi-D scatterplots, (ii) aligning image and data
space, (iii) removing occluded points, (iv) removing datasets
that exceeded reliable human judgment, and (v) removing
uncertain human judgments.

The overall cleaning process is summarized in the Figures
2 and 3.

i) 2D scatterplots only: We first discarded all the 3D and
multi-D scatterplots and only considered the 2D scatterplots,
as these are the visual encodings current separation measures
operate on.

ii) Align image and data space: The base data we used
came as 1008× 1008 pixel scatterplot images consisting of
labeled points rendered as 15-pixel-diameter colored discs.
Two examples are shown in Figure 1 (a) and (b). As these
scatterplot images did not come as normalized representa-
tions, we needed to ensure that the data space that the sepa-
ration measures see aligns with the image space that the hu-
man coders saw. Towards that goal, we used simple image
processing techniques that allowed us to detect the colored
discs from the image space (See an example in the Figure

2(a)), and match those with the points from the data space.
Visually inspecting the detected discs along with original ab-
stract set of points, showed considerable misalignments and
differences in number of points (due to occlusion). Hence, to
ensure a robust alignment between image and data space, we
used standard linear programming technique to compute an
appropriate transformation matrix (Figure 2(b)). In theory,
it would have been enough to select two discs maximally
spaced along some diagonal in the picture and their match-
ing points to find the alignment. However, in many cases,
this matching between discs and points was not even possi-
ble due to the afore mentioned problems. Thus, we had to
use a systematic exploration of all the possible pairs of discs
and data and compute the mean square distances between
each point and its nearest center as a matching score to get
the best match automatically.

We visually checked all of the aligned sets of points (vi-
sual checking was far easier than manual finding of the good
alignment) and although most of the set of points were suc-
cessfully aligned with this automatic process, we discovered
a dozen of failures to be manually aligned through a specific
visual interface we designed for this sake. Note that the coor-
dinates of the aligned set of points were rounded to the ones
of the nearest pixel in the image space I.

iii) Removing fully occluded points: We also had to decide
which data point was visible to a human and which was not
due to full occlusion. We rendered the aligned labelled data
using a 15-pixel circle, one at a time. We then counted the
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(a) (b) (c)

Figure 1: Examples of two scatterplots (a) and (b) each as shown to the expert coder in the study by Sedlmair et al. [SMT13].
(c) An example of a scatterplot not included in the study due to a too large number of classes and points.

number of pixels in the original picture falling within this
circle and having the correct color. We delete every point
whose rendering showed no pixel of the correct color in the
correct place. We then kept only one of the multiple occur-
rences of aligned points in the same pixel.

iv) Removing datasets: Subsequently, we excluded scat-
terplots for which only one class was visible. We then also
filtered out all scatterplots that had more than 14 classes
or more than 1000 (visible) points (Figure 1(c)). This fil-
ter step had several reasons. First, given our base data with
color-coded discs as points and the limitations of human per-
ception, reliable judgments cannot be guaranteed over a cer-
tain scale. Second, there is also a considerable computational
burden involved in this step as the computation of some of
the separation measures is quite expensive.

v) Removing uncertain human judgments: After this
alignment and cleaning process, we generated the data ds,Ct

to be used in our evaluation framework, that is, scatterplots s
focused on a specific target class Ct . There are as many data
generated for a scatterplot as there are classes in its original
abstract set of points. For each of these data ds,Ct , we had
two attached human judgments h1(.) and h2(.) with values
in {1,2,3,4,5}. In order to end up with a single ground-
truth judgment h(.) that is reliable, we used a consensus-
based aggregation function G where a doubt (judgment value
3) or too big a difference between the human judgments
(|h1(.)−h2(.)|> 1) were discarded:

h(ds,Ct ) = G({h1(ds,Ct ),h2(ds,Ct )})

where

G(u,v)=


1 (sep) ⇔ (u,v) ∈ {(5,5),(4,5),(5,4)}
0 (nonsep) ⇔ (u,v) ∈ {(1,1),(2,1),(1,2)}
−1 in any other case

Any data ds,Ct ending up with h(ds,Ct ) = −1 were dis-
carded from the evaluation.

We finally ended up with the labeled dataset DS attached
to the above aggregated judgment decision rule h. Eventu-
ally, this process resulted in 828 data items ds,Ct , that is, tar-
get class-specific scatterplots (Figure 3). These data items
were derived from 224 multi-class scatterplots issued from
using PCA, robust PCA, Glimmer MDS, and t-SNE on 56
of the 75 multidimensional datasets, originally taken from
Sedlmair et al. [SMT13]. The process is visually illustrated
in Figure 2 and 3.

2. Separation Measures

In the following, we provide additional information to the
measures that we tested in our study. These details extend
Section 4.2. that gives a high-level overview of the measures.

In our study, we compared the following separation mea-
sures from the visualization and machine learning com-
munities: the Distribution Consistency measure (DC) and
the Distance Consistency measure (DSC) [SNLH09]; the
Class Density measure (CDM) and the 2D Histogram Den-
sity measure (HDM) [TAE∗09] (we did not consider the
1D-HDM from the same authors because it is a heuris-
tic approach similar to the well-grounded Linear Discrim-
inant Analysis (LDA) that we also considered); the Sil-
houette (SIL) [Rou87], Dunn’s index (DUNN) [Dun74],
Gamma (GAM) [BH75], Calinski-Harabasz (CAL) [CH74]
and Weighted Inter-Intra (WII) [Str02] were all compared
in [LAdS12] as measures to evaluate cluster structures in
terms of between-cluster separation and within-cluster ho-
mogeneity; the Hypothesis Margin (HM) [GBNT04], the
Class Separation (CS) [MMdALO15] and the Linear Dis-
criminant Analysis (LDA) [Fuk90] have been proposed in
the machine learning community.

Table 1 shows all measures that we tested and gives a brief
summary of how they operate. It also provides a rough high-
level classification of these measures in terms of the ele-
ments they are used on, the locality criteria they are based
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(a) (b) (c)

Figure 2: (a) A scatterplot as seen by the human experts. The classes are displayed over each other in the same order than
the colored spots appear within the legend from top to bottom. (b) Circular spots are automatically extracted from the original
picture, and their centers (blue points) are automatically aligned with the data points (red circle) and their position rounded to
the closest integer value. Each point of this aligned dataset is rendered as a 15-pixel width spot and kept in the final dataset (c)
if at least one colored pixel of this spot is visible in the original picture. If multiple data points are in the same pixel position,
then only one is kept, and if multiple colors are given to the same pixel position, then only the lowest one in the legend color
sequence is kept (for instance, if yellow and red are over-plotted, then only yellow is kept).

Figure 3: The cleaned multi-class dataset from Figure 2 is transformed into as many 1-vs-all class datasets as there are classes
in the cleaned dataset (Target class in red). The separation measures are evaluated on these one-vs-all cleaned datasets.

on, the notion of discrepancy used, and their complexity.
Some of the measures needed to be parameterized. For each
of those, we tested between 5 and 10 different parameter set-
tings. Formal descriptions of all measures are detailed below.

2.1. Notations

Each scatterplot s ∈ S is a set of points Xs = {x1, . . . ,xNs}
such that ∀x ∈ Xs,x ∈ I ⊂ N2 where I is the 2-
dimension pixel space of the image rendering s. Let |S|
denote the number of elements in the set S. Let d : I ×
I → R+ be the Euclidean distance function and DSi,S j =

1
|Si||S j| ∑x∈Si ∑y∈S j

dx,y be the average Euclidean distance
between any point of Si ⊆ Xs and any point of S j ⊆ Xs

and let us write DSi = DSi,Si . Let Cs = {Ct ,Co} be a par-
tition of Xs into 2 disjoint subsets (Ct ∪ Co = Xs and Ct ∩
Co = ∅) where t is the target class whose separation is to
be evaluated by the human or the separation measure. Let
Sbtn = {(x,y)|x ∈ Ct ,y ∈ Co} be the set of pairs of points
assigned each to a different class and Swtn = {(x,y)|∀u ∈
{t,o},(x,y) ∈ C2

u} be the set of pairs of points assigned each
to the same class. Let Ni = |Ci| be the number of elements in
Ci so Nt +No = Ns and let Ni = Ni(Ni− 1)/2 be the num-
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m Short description Elements Locality Discrepancy Complexity Param. Reference

ABTN between-class average distances P dist B O(N2) - [LAdS12]
AWTN within-class average distances P dist W O(N2) - [LAdS12]
ABW between-class ABTN over within-class AWTN average

distances ratio
P dist B/W O(N2) - derived by us

WII average between-class over average within-class dis-
tances weighted by the respective size of the classes

P dist B/W O(N2) - [Str02]

CAL centers-of-mass between-class square distances over
points-to-centers-of-mass within-class square distances

P, CoM dist B/W O(N) - [CH74]

LDA centers-of-mass between-class distances over points-to-
centers-of-mass within-class distances ratio with opti-
mal linear transformation of the points to maximize this
ratio

P, CoM dist B/W O(N2) - [Fuk90]

DUNN maximum within-class distance over the minimum
between-class distance ratio

P dist min(B)/max(W ) O(N2) - [Dun74]

GAM normalized comparison of numbers of within-class dis-
tances smaller or greater than between-class distances

P dist
|W <B|−|W >B|
|W <B|+|W >B|

O(N4) - [BH75]

SIL difference of between-class and within-class average
distances normalized by the maximum of them

P dist (B−W )/max(B,W ) O(N2) - [Rou87]

HM average differences between distances from each point
to its other-class and its same-class nearest-neighbor

P NN (B−W )/max(B,W ) O(N2) - [GBNT04]

CS average proportion of same-class neighbors of each
point in minimum spanning tree

P ExtMST W/(W +B) O(N2) - [MMdALO15]

DSC proportion of points x whose the nearest class-center-of-
mass belongs to the same class as x

P, CoM NN W/(W +B) O(N) - [SNLH09]

CDM pixel-wise class-density differences with class-density
estimated at pixel z as the inverse distance to its Kth

nearest point of this class

P, Pix KNN ∆ρ O(|I|KN log(N)) K (10) [TAE∗09]

DC average of the class entropy for each pixel computed
over the classes of its ε-neighbors

P, Pix ε NN H O(|I|N) ε (10) [SNLH09]

HDM entropy measure of the classes in each cell and their ad-
jacent cells in a square-grid partition

P, Bn β NN H O(|B|N) Nb ,β (5) [TAE∗09]

Table 1: Summary of the separation measures used in the experiments. Each separation measure aggregates a local measure
of discrepancy between some elements of the classes. The elements can be the points (P), the center-of-mass (CoM) of each
class, the image’s pixels (Pix) or the histogram’s bins (Bn). The locality can depend on distances (dist) or on some discrete
neighborhood (KNN, ExtMST, εNN, βNN). And the discrepancy measure can depend on some aggregation of within-class (W)
and between-class (B) quantities, on entropy (H) or a difference of densities (∆ρ). We also report the computational complexity,
and free parameters if any (in parentheses we note how many different settings of these parameters we tested in our study).
Measures are organized based on their technical similarities in terms of their elements, locality and discrepancy characteristics.

ber of pairs of different elements in Ci so |Sbtn| = NtNo
and |Swtn| = Nt +No. Let us write u = t ⇔ u = o and
u = o⇔ u = t. Finally let ci =

1
Ni

∑x∈Ci
x be the center-of-

mass of the class Ci.

2.2. Measures

We now formally define all measures that we tested, in al-
phabetical order.

Notice that in some cases (HM, WII), we reverse the mea-
sure as originally written in order to have greater values for
greater separation. We also ignored the penalization factor
used in some measures (CAL, WII) related to the number of
classes, as we always have only two classes (Ct and Co) for
all the data in our framework.

2.2.1. ABTN, AWTN and ABW

The Average Between and Average Within measures eval-
uate the between-class separation and within-class homo-
geneity, respectively:

ABT N(Cs) = DCt ,Co

AWT N(Cs) =
∑

u∈{t,o}
NuDCu

∑
u∈{t,o}

Nu

.

We also used the ratio between these two measures:

ABW (Cs) =
ABT N(Cs)
AWT N(Cs)

2.2.2. CAL

The Calinski-Harabasz measure is related to the concentra-
tion of the classes around their center-of-mass:

CAL(Cs) =
∑

u∈{t,o}
Nud2

cu,cs

∑
u∈{t,o}

∑
x∈Cu

d2
cu,x

2.2.3. CDM

The density of each class is estimated in each image pixel as
the inverse distance to its Kth nearest points of this class. The
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sum over the pixels of the differences between these class-
density images give the CDM measure. K is a parameter of
this measure.

CDM(Cs) = ∑
z∈I
|ρCt (z,K)−ρCo(z,K)|

where

∀z ∈ I,∀Ci ∈ Cs,ρCi(z,K) =
1

maxx∈KNNCi (z,K)(dz,x)

and

KNNS(z,K) = {x ∈ S|K ≥ |{y ∈ S|dz,y < dz,x}|}

is the set of the K nearest neighbors of z.

2.2.4. CS

CS is the average proportion of the neighbors of each point
x with respect to the ExtMST graph spanning Xs, which be-
long to the same class as x.

CS(Cs) =
1

Ns
∑

u∈{t,o}
∑

x∈Cu

|ExtMST (x)∩Cu|
|ExtMST (x)|

where ExtMST (x) is the set of neighbors of x in the
ExtMST graph. The algorithm to compute the ExtMST
graph is given in [MMdALO15].

2.2.5. DC

DC is the average of the class entropy for each pixel z com-
puted over the classes of its ε-neighbors εNN(z,ε). ε is a
parameter of this measure.

DC(Cs) = 1− ∑z∈I |εNN(z)|HεNN(z)
∑z∈I |εNN(z)|

where HεNN(z,ε) is the entropy in the ε-neighborhood of
the pixel z:

HεNN(z,ε)=− ∑
u∈{t,o}

|εNN(z,ε)∩Cu|
|εNN(z,ε)| log

|εNN(z,ε)∩Cu|
|εNN(z,ε)|

and εNN(z,ε) = {x ∈ Xs|dx,z ≤ ε}.

2.2.6. DSC

DSC is the proportion of points x whose the nearest class-
center-of-mass belongs to the same class as x:

DSC(Cs) =
∑u∈{t,o} |{x ∈ Cu|argminv∈{t,o}(dx,cv) = u}|

Ns

2.2.7. DUNN

Dunn’s index compares the maximum within-class distance
to the minimum between-class distances:

DUNN(Cs) =
min(x,y)∈Sbtn

dx,y

max(x,y)∈Swtn
dx,y

2.2.8. GAM

The Gamma measure is defined as follows. Let d+ =
|{{x,y,x′,y′}|(x,y) ∈ Swtn,(x′,y′) ∈ Sbtn,dx,y ≤ dx′,y′}| be
the number of times that a pair of points that belong to the
same class has distance smaller than two points assigned
to different classes, and let d− = |{{x,y,x′,y′}|(x,y) ∈
Swtn,(x′,y′) ∈ Sbtn,dx,y ≥ dx′,y′}| be the opposite, then:

GAM(Cs) =
d+−d−

d++d−
.

2.2.9. HDM

The Histogram Density Measure is an entropy measure of
the classes in each cell and their adjacent cells in a square-
grid partition B of the image I. The number of bins Nb is a
parameter of this measure.

HDM(Cs) = 1−
∑z∈B |βNN(z)|HβNN(z)

∑z∈B |βNN(z)|

where HβNN(z,β) is the entropy in the β-neighborhood of
the bin z:

HβNN(z,β)=− ∑
u∈{t,o}

|βNN(z,β)∩Cu|
|βNN(z,β)| log

|βNN(z,β)∩Cu|
|βNN(z,β)|

and βNN(z,β) = {x∈ Xs|‖x− z‖∞ ≤ β} which for β = 1
is the neighborhood of the bin z defined as all (up to 8) the
adjacent bins to z in the grid B.

2.2.10. HM

The Hypothesis Margin measure is the average of the dif-
ferences between distances from each point to its other-class
nearest-neighbor and to its same-class nearest-neighbor:

HM(Cs) =
1

Ns
∑

u∈{t,o}
∑

x∈Cu

min
y∈Cu

dx,y− min
y∈Cu,y 6=x

dx,y

max(min
y∈Cu

dx,y, min
y∈Cu,y 6=x

dx,y)

2.2.11. LDA

The Linear Discriminant Analysis between-scatter over
within-scatter ratio as been proposed as a separation mea-
sure by Fukunaga [Fuk90]. The between-scatter Mbtn and
within-scatter Mwtn are 2×2 matrices defined as:

Mbtn =
1

Ns
∑

u∈{t,o}
Nu(cu−cs)(cu−cs)T
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Figure 4: Analyzing the number of necessary bootstrap samples illustrated by the performance of the DSC measure. The x-axis
in both graphs shows the increasing number of bootstrap samples. (left) The y-axis encodes the value of the AUC, the plain
line shows the average AUC value, the dashed lines the standard deviation. (right) The y-axis shows the standard deviation of
the AUC average over the x first bootstrap samples. Both graphs start to converge at around 1,000. At 10,000—the number we
selected—we found them to be very stable.

and

Mwtn =
1

Ns
∑

u∈{t,o}
∑

x∈Cu

(cu−x)(cu−x)T

The LDA seeks to find the optimal matrix W such as to
maximize the between-scatter over within-scatter ratio:

LDA(Cs) = max
W

(
tr(W T MbtnW )

tr(W T MwtnW )
)

This is equivalent to maximizing the average pairwise
distance between class means and minimizing the average
within-class pairwise distance over all classes.

2.2.12. SIL

The Silhouette measure quantifies the separation as the dif-
ference between the average between-class distances and
the average within-class distances, normaliwed by the max-
imum of these two quantities. It is defined as:

SIL(Cs) = ∑
u∈{t,o}

∑
x∈Cu

D(x,Cu)−D(x,Cu)

max(D(x,Cu),D(x,Cu))

2.2.13. WII

The Weighted Inter-Intra measure is the average between-
class over average within-class distances weighted by the
respective size of the classes [Str02] (eq. (3.5) p. 61):

WIIorig(Cs) =
NsD(Ct ,Co)

NtD(Ct)+NoD(Co)

2.3. Parameterization

Three of the measures came with additional parameters,
which we also were curious to test.

We set the number of bins Nb along one axis in the HDM
partition to {5,10,20,40,80}, with the neighborhood size
set to β = 1. The bins are square-shaped and their width is
equal to the largest range of values among the two axes di-
vided by Nb. The lower-left corner of the lower-left bin starts
at the minimum value onto both axes.

The number K of K-Nearest Neighborhood in the CDM
measure has been set to {1,2,3,4,5,6,7,8,9,10}.

We compute DC for the following values of ε:
{0.001,0.002,0.005,0.01,0.02,0.05,0.1,0.2} × ∆(Xs)
where ∆(X) = max(x,y)∈X2(dx,y) is the diameter of the set of
points, which means that the radius ε of the neighborhood
was set between 0.1% and 20% of this diameter.

3. Number of Bootstrap Samples

As described at the beginning of Section 4.3. in the paper,
we had to decide on a number of bootstrap samples to use in
our study. To do so, we studied how the AUC average values
as well as the standard deviation for different measures var-
ied with increasing numbers of bootstrapping samples. We
stopped at 10,000 bootstrap samples, a number that we found
highly sufficient, given that average and standard deviation
values already started to converge at about 1,000 samples.
Figure 4 illustrates this analysis for the DSC measure.
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Figure 5: The 3 families of datasets used in the pilot study. There are twice as many red points as blue ones in all families. (left)
Both classes are drawn from the same uniform distribution, their human judgment is ’non-sep’. (center) Classes are drawn from
three equal variance Normal along a diagonal, two of them being red, the other being blue. The blue class overlap slightly the
red class. (right) Classes are drawn from three clearly separated Normal. The human judgment to be predicted is ’sep’ for the
last two families. 10 datasets where drawn randomly from each of these 3 families to get the 30 datasets we used in this pilot
study.

4. Sanity Check Pilot Study

Here, we provide additional information regarding the sanity
check pilot study that we mention in Section 4.3 of the paper.

In this pilot study, we tested all the measures on 3 families
of simplistic, synthetically-generated datasets. One example
from each family is shown in Figure 5. The obvious human
class separability in these three families was pre-specified by
the authors, with two families generating clearly separable
classes, and one family non-separable classes.

We generated 10 datasets from each of these families,
ending up with 30 datasets for which all the separation mea-
sures were computed. Their AUC bootstrap distribution is
displayed in Figure 6. The measures are ranked in decreas-
ing order of their AUC bootstrap average. This experiment
shows that 26 over 35 measures are perfect in predicting the
human judgment with a 100% AUC bootstrap median. This
result is in contrast to the one we get with the same measures
onto the realistic and larger sets of data we used in the main
experiment of this work.
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